The cost and benefit of transitioning to Regenerative Viticulture

Axel Herrera¹, Ellen Bruno², Kerri Steenwerth^{1,3}, Cristina Lazcano¹

November 7, 2024

1. Department of Land, Air and Water Resources. University of California Davis; 2. Department of Agricultural and Resource Economics, University of California Berkeley; 3. USDA-ARS, Davis.

Sheep grazing

1. Protect the soil surface

Regenerative

Agriculture

6. Integrate livestock

2. Minimize soil disturbance

No till

Compost use

5. Use of carbonbased amendments

living plants/roots in the soil

4. Maximize biodiversity 3. Maintain

Cover cropping

Potential benefits

Objective

 Quantify long-term economic impacts of Regenerative vs. Conventional management in Chardonnay and Pinot Noir vineyards in Sonoma.

Methodology

Figure 2. General steps follow in the research methodology

Figure 1. Difference in management practices between the conventional (CV) and regenerative (RA) scenarios, and main characteristics of the 2 vineyards studied in the Sonoma area. ^aForage Mix: white clover, annual barley, and rye.

^bSheep mix seed: 1% Campeda Subclover, 2% Hykon Rose Clover, 2% Dwarf Essex Rape, 23% Austrian Winter Peas, 35% Winter Ryegrain, and 35% Triticale.

Economic analysis

Conventional

Regenerative

↑ Increased cost

↑ Herbicides: \$68

↑ Mowing: \$120

↑ Tillage:\$90

↑Cover crop: \$48

↑\$326

T IIICIEaseu cosi	1	Increased	cost
-------------------	----------	-----------	------

↑ Compost purchase and use: \$340

↑ Sheep grazing event: \$100

↑Cover crop mix: \$96

↑\$536

↑\$210

↑\$86

↓ Decreased cost

→ Fertilizer nutrient value compost: \$92

✓ Fertilizer nutrientvalue manure: \$ 3.7

↓Erosion control: \$28

↓\$124

All monetized values (\$) are per acre/year.

Conclusions

Regenerative (RA)

Site, goals and planning

Regenerative practices in-house

Thank you for your attention.

axherrera@ucdavis.edu

https://lazcano.faculty.ucdavis.edu

Project collaborators:

• Department of Land, Air and Water Resources, University of California Davis.

Cristina Lazcano

 Department of Agricultural and Resource Economics, University of California, Berkeley.

Ellen Bruno

- USDA-ARS, Crops and Pathology and Genetics Research Unit.

 Kerri Steenwerth
- Jackson Family Wines
 Alexandra Everson, Aaron Stainthorp

Acknowledgments

We gratefully acknowledge the support of the California Department of Food and Agriculture (CDFA), the Foundation for Food and Agriculture Research (FFAR), and USDA-ARS for funding this research.